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Abstract

Increased fractional frequency uncertainties in
comparing two cesium-fountain primary frequency
standards due to a long-baseline comparison process are
examined. These include frequency uncertainties
introduced by the time-transfer process and uncertainties
introduced by possible long-term dead time in the fountain
operation. Using common-view GPS it may take up to 40
days to reduce the time-transfer fractional frequency
uncertainty to 1x10°15. A combination of common-view
GPS and two-way satellite time and frequency transfer
can reduce this to 24 days. With a very low noise local
oscillator such as a cavity-tuned hydrogen maser,
distributed fountain dead times as large as 87% can be
present and yet contribute only an additional uncertainty
of less than 3.3x10-16,

KEY WORDS - time transfer, noise, dead time, cesium-
fountain

Introduction

In the near future there will be two or more operating
cesium-fountain primary frequency standards capable of
frequency accuracies at or near 1x10-15, However, these
standards will most likely be separated by thousands of
kilometers and the task of comparing the standards
without degrading their declared uncertainty is
formidable. The procedures for determining the basic
uncertainty of the fountain standards are not the subject of
this paper, but here we will consider only the potential
sources of increased uncertainty due to the comparison
process.

Figure 1 shows a simplified diagram of the
comparison process. The purpose of the comparison is to
determine the frequency difference between the two
primary standards, P(A) and P(B). To accomplish this
three frequency differences are measured. These are: (1)
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Figure 1 Illustration of frequency comparison process.

the frequency difference between the local oscillator,
LO(A), and the primary standard, P(A), at site A, (2) the
frequency difference between LO(A) and LO(B), and (3)
the frequency difference between LO(B) and P(B).
Fractional frequency uncertainties associated with any of
the three measurement processes must be added in
quadrature with the basic evaluated uncertainties of the
two primary standards.

The local oscillators at sites A and B are linked by a
long-distance time-transfer system that compares the
phase (or time) difference of the two LO's over a test
interval. The noise in the time-transfer link results in an
uncertainty in knowing the phase difference and hence the
frequency difference of the two LO's. This frequency
uncertainty is a function of the uncertainty in the time
(phase) difference and the length of the interval over
which the time difference is measured. In comparing two
clocks it is essential to know the time difference only at
the beginning and end of the test interval. Therefore, the
time-transfer measurement does not need to be
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continuous. However, it may be helpful to make a
number of time difference measurements clustered around
the beginning and end points to average down white phase
noise.

The standard C/A-code common-view - GPS time-
transfer technique generally has a oy(t) instability of
approximately 1 ns at time intervals of one day or longer.
This corresponds to fractional frequency variations of the
transfer medium on the order of 10714 at two days and
10715 at twenty days. Traditional analysis techniques
such as oy(t), Mod Gy(‘t), or cy(‘r) are based on the
second difference of a time series, which is of course
necessary when dealing with clock frequency offsets and
clock noise.  However, the frequency uwuncertainty
introduced by a time-transfer process is determined by a
first difference of the time series that represents the time-
transfer noise. The standard variances can serve as a
measure of time-transfer frequency uncertainty only if
clearly defined relationships exist between the first and
second differences of a time series. Such relationships
exist only if all instabilities are caused by well-defined,
stationary, noise processes. Also sufficient time must be
available to fully characterize the slow noise processes. In
complex systems these requirements may not always be
met.

One can eliminate clock frequency offset and clock
noise and still keep the time-transfer instabilities by taking
the difference of two clock comparison data sets obtained
with different (and independent) time-transfer techniques.
This makes possible an analysis based on the first
difference of a time series. We will present here a
technique for calculating directly the contribution to
frequency uncertainty caused by instabilities in a time-
transfer system.

It will be shown that comparison times approaching
40 days may be required to obtain a fractional frequency
uncertainty of 10-13 if only one time-transfer technique
such as common-view GPS is used. This is an
uncomfortably long time, which is vulnerable to one-time
random events such as equipment failures, etc. Improved
time-transfer techniques are clearly needed. Fortunately
several possibilities are on the horizon, but they are not
yet fully developed and it is very likely that some of the
first comparisons may be made with common-view GPS
and/or two-way satellite time and frequency transfer
(TWSTFT). Information from primary frequency
standards is also used in the generation of International
Atomic Time (TAI), which does not approach the 1x10-15
level until approximately 40 or S0 days. Thus an
optimum comparison to TAI also requires long evaluation
times. This raises the issue of operating a cesium-fountain
standard continuously for many tens of days. Since such
operation is likely to be a problem, we must also consider

the impact of fountain dead time on the uncertainty of the
frequency comparison.

The primary standards at sites A and B are basically
very high-quality frequency discriminators, so they
measure frequency rather than time (or phase). The
frequency stability of the LO's is not relevant if the
primary standards operate continuously, since the LO
frequencies will drop out of the comparison. However, if
the primary standards do not operate continuously the
situation is very different. We are not considering here
the toss-to-toss dead time of order 1 second which may
degrade the short-term stability of the fountain due to LO
noise. Here we are concerned with dead times on the
order of many days out of an interval of tens of days. In
this case long-term frequency information is lost and the
average frequency of the LO is known with less precision.
This introduces an additional uncertainty in knowing the
frequency difference between the primary standard and
the local oscillator, which depends on the noise
characteristics of the local oscillator. Methods are
presented here for estimating the fractional frequency
uncertainty due to long-term distributed fountain dead
time.

Time-transfer Instabilities

In this paper we are primarily interested in frequency
comparisons, so accurate knowledge of time-transfer
delays is not important here. Our main interest is in
quantifying the variations in these delays. However,
precisely knowing the characteristics of the instabilities in
a time-transfer system is a very difficult task, particularly
when you are ftrying to evaluate state-of-the-art
techniques. One could in principle quantify the noise of a
time-transfer process by comparing it to a much more
stable technique. But then we would want to use the more
stable technique instead.

However, there are a number of ways to-gain some
information on the nature and level of time-transfer
instabilities in state-of-the-art systems. One traditional
method is to calculate the time deviation, oy(1), of two
high-stability clocks compared via the time-transfer
technique of interest. A . cy(t) analysis is very useful in
identifying noise types. Figure 2 shows oy(r) for
UTC(USNO)-UTC(NIST) as determined via common-
view GPS over a 200 day interval. The curve is calculated
using individual tracks and is shown without measured
ionospheric or precise orbit corrections. For comparison
an internal measurement of UTC(NIST) is also shown.
Internal data for UTC(USNO) is not presented since it is
comparable to or quieter than UTC(NIST). Both curves in
Fig. 2 show evidence of white phase noise below t = 1
day, but the common-view noise is much larger. (The
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Figure 2 Noise analysis of a GPS common-view
comparison of UTC(NIST) with UTC (USNO).

white phase noise evident in the internal measurement of
UTC(NIST) is from the microstepper used to steer
UTC(NIST).) The spacing of the GPS data is not strictly
periodic, but this has a negligible effect on the calculation
of oy(t) [1]. Also, the spacing for the internal
measurement of UTC(NIST), though periodic, is not the
same as that of the GPS data. Since white phase noise
levels are sensitive to the details of the data-collection
procedures and the measurement hardware, a comparison
of the two curves must be done with caution. However,
the internally measured noise level in Fig. 2 would be
even lower if its data had been averaged in the same
fashion as the GPS data. Thus the upper curve is
reasonably free of clock noise out to about 10 days. The
characteristics of the transfer noise are that it is white
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Figure 3 Difference of GPS common-view and TWSTFT
for the NIST/PTB link.
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Figure 4 Time deviation of the data in Fig. 3.

phase out to about 1 day, but with a hint of a diurnal effect
(weak peak at T ~ 1/2 day). From one day to about ten
days it is flicker phase in nature. The minimum noise
level is about 800 ps at 2 days.

Another approach to analyzing time-transfer noise is
to compare two independent time-transfer methods for the
same two clocks. Figure 3 is a time series showing the
difference of common-view GPS (one day averages) and
TWSTFT between clocks at the National Institute of
Standards and Technology (NIST) and the Physikalisch-
Technische Bundesanstalt (PTB). The data cover an
interval of 431 days in 1997 and 1998. Since two-way
measurements are made only every second or third day,
the TWSTFT data had to be interpolated to match the GPS
data. By taking the difference of the two data sets the
clock noise and offset are removed. Figure 4 is a plot of
ox(1) for this data. Note that the noise is flicker phase out
to about 100 days, indicating that long-term clock noise is
not present. This is a major advantage of the approach
since we are primarily interested in the long-term stability
characteristics of the transfer process.

Unfortunately, this approach gives the combined
noise of the two time-transfer techniques. Comparing the
NIST and PTB clocks by individual transfer techniques as
in Fig. 2 indicates that the noise levels of common-view
GPS and TWSTFT are both on the order of 1 ns at a few
days for the NIST/PTB links, but we have no way of
knowing the relative noise levels of the two techniques in
the long-term (beyond about 10 days). Most likely the
noise level in Fig. 4 is too high for GPS noise alone (it
should be reduced by 172 if the two techniques have
equal noise levels), but there may be common-mode
fluctuations in the two techniques. Without knowing the
details of possible common-mode fluctuations it is
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impossible to tell whether the combined noise is larger or
smaller than that of the individual techniques.

A second approach that removes clock noise is to
make closure measurements among three remote
locations. Unfortunately this gives the sum of three time
transfers and also does not reveal any environmental
sensitivities in the ground equipment. Thus this technique
also has its weaknesses. To fully characterize the noise of
a state-of-the-art time-transfer technique one needs three
truly independent techniques of comparable stability so
that a three-corner-hat analysis can be performed.
Unfortunately these do not exist. Consequently, we are
left with the situation of not knowing precisely what the
levels of instabilities are in either common-view GPS or
TWSTFT. The best we can do is make an estimate.
Therefore, we will use the data of Fig. 3 as an estimate of
GPS common-view (or TWSTFT) noise for the
NIST/PTB link and accept that it may be pessimistic by
something on the order a factor of V2. Nevertheless, it is
useful as an example to illustrate how the frequency
uncertainty of a time-transfer technique is calculated.
Some advantage can be gained by averaging the LO
frequency differences obtained with two time-transfer
techniques and this will be discussed later.

The dashed line in Fig. 4 indicates a frequency
stability of 1x10-15 in Mod & (t). The intersection of this
line with the solid line indicates that it will take something
on the order of 30 days to reach a frequency stability of
1x10-15. However, as mentioned earlier, Mod o,,(7), and
cy(t) may not be a good measure of f};equency
uncertainty in a time-transfer link under some
circumstances. Since they are derived from the second
difference of a time series they may not properly quantify
the frequency uncertainty of some slow processcs. A
time-transfer system is by definition not a frequency
generator, so we must not exclude slow processes that
constitute a real frequency error. A more direct way to
estimate the frequency error introduced by the time-
transfer process is to perform a first difference on the time
series as illustrated in Fig. 5. No assumptions have to be
made regarding the relationships between first and second
differences, and furthermore only half the time s needed
to quantify the instabilities. The data shown ir Fig. 5 is a
subset of the data in Fig. 3.

In Fig. 5 let us define a test interval T, that will
generally be chosen to be long enough to give the desired
frequency uncertainty, but its length will also be
influenced by external factors such as how long your
equipment will run, or how much patience you have. Also
we will define an interval A over which the time
difference values x; will be averaged to give X;. The
interval A can be much smaller than T/2. By taking the
difference between X4 at the end of the interval and it at
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Figure 5 Parameters used for the first difference.

the beginning, and dividing by t© = T-A one gets the
fractional frequency error caused by the instabilities in the
time-transfer process. This is similar (but not identical) to
how frequency is defined in Mod oy(t). From this a
statistical frequency uncertainty, ctt(’[>,lr), can be defined
as shown below.

(Fae—%))

o5 (T,1) = 2 (1

This is just the mean square fractional frequency of the
time-transfer data set. If the time-transfer process has no
instabilities (slow or fast) then oy(T,t) will be equal to
Zero.

One could also use linear regression to obtain a
measure of the slope (frequency) of the time series, which
would be optimum for white phase noise. For random-
walk phase (white frequency) the use of endpoints (with A
<< T), as in Eq. 1, is optimum. However, we are dealing
here with flicker phase noise so the situation is not clear.
More importantly, when comparing two clocks, the
cumulative time error uses the time end points only.
Therefore, it is felt that quantifying the frequency
uncertainty of the transfer process should be consistent
with the procedures used in a clock comparison process,
that is, using the end points.

Figure 6 shows o(T,1) as calculated from the data in
Fig. 3. The four solid lines represent values calculated for
T = 10, 20, 30 and 40 days, with A ranging from 1 to 10
days, As one would expect oy(T,r) decreases
approximately as 1/T. However, increasing A, while
holding T constant, has little effect. No matter what value
of A is used, it takes about 40 days to reach a level of
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Figure 6 Frequency uncertainty due to time-transfer
noise.

frequency uncertainty close to 11015, Confidence
limits are not shown since they have not been calculated
for oy(T,7) yet.

The weak dependence on A .can be explained by
noting that the reduced uncertainty in X; obtained by
averaging is counteracted by the decrease in 7 that results
from a larger A. If the transfer noise were white phase a
stronger dependence on A would be observed. However,
as seen in Fig. 2, a one-day average removes virtually all
the white phase noise.

Figure 7 shows the distribution of the individual first
difference measurements that go into calculating o(T,1)
for T = 40 days and A = 1. Just slightly less than 62
percent of the values fall within +/- 1x10715, indicating
that the distribution function is close to gaussian.

Average Frequencies Over 40 d Intervals
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Figure 7 Distribution of frequency uncertainty values.
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If one assumes that the time-transfer noises of GPS
common-view and TWSTFT are equal, then oy(T,7) in
Fig. 6 can be divided by V2 and it will take T = 34 days to
achieve 1x10°15 using either technique alone. Another
factor of V2 is gained if both GPS common-view and
TWSTFT data (assumed to be independent) are available
for determining the frequency difference of the two LO's
and the two are averaged. This reduces the comparison
time to 24 days to achieve a frequency uncertainty of
1x10-15 in the time transfer. In fact, by averaging the
data from two independent time-transfer systems the
frequency uncertainty is one half the combined noise
(o(T,7) in Fig. 6) no matter what the relative noise levels
of either time-transfer system are. This approach is not
optimum if one of the transfer systems is much quieter
than the other, but it is the best that can be achieved if the
individual noise levels are not known. Another advantage
of using two time-transfer techniques during a fountain
comparison is the ability to more easily identify unusual
events in the time-transfer processes.

Gy(’t) and Mod cy(t) have also been calculated from
the data set used for Fig. 6. o(t) is about 20% larger
then oy(T,7) at T = 40 days, while Mod o,(1) is 30%
smaller. It is not surprising that the Allan variances are in
reasonably good agreement with oy4(T,t) since the noise
characteristic of the data in Fig. 6 is a fairly well behaved
flicker of phase. The Allan variances work well as a
measure of frequency uncertainty if the noise levels are
stable over time, the instabilities fall into the category of
one of the standard noise processes, and enough time has
been available to adequately characterize the slow
processes. However, instabilities in complex systems
such as a time-transfer system may not be this well
behaved. The Allan variances can underestimate the
frequency uncertainty in situations where slow systematic
processes, such as seasonal variations, are present if: (1)
insufficient time has been available to adequately
characterize them, and/or (2) they are not stationary.

It is important to note that o4(T,t) can be used to
characterize frequency uncertainty only on a time series
where clock noise and the clock offset have been
eliminated, such as in Fig. 3 where two transfer techniques
are compared. It is of no use in a situation where a clock
frequency offset dominates the time-transfer noise
characteristics.

An evaluation interval of 24 to 40 days to compare
two cesium-fountain primary standards is an
uncomfortably long period of time. Therefore, it is very
desirable to have more stable time-transfer techniques.
Common-view GPS can be improved by using measured
ionospheric corrections and precise ephemerides [2]. Also
an "all in view" approach using multichannel receivers
can be helpful [3]. Use of the P-code would yield even



more impressive results but this would require classified
receivers or using GLONASS [2]. However, the most
promising' GPS technique is to use the carrier phase for
time transfer.  Preliminary results have been very
encouraging and this technique should reduce the time-
transfer noise by an order of magnitude [4]. This would
reduce the comparison time to about 4 days or less at the
1x10715 level. Improvements in TWSTFT may- also give
substantially reduced instabilities [5]. However, none of
these techniques -are fully proven or operational yet.
Therefore, it is likely that the first fountain comparisons
will be made with common-view GPS and/or TWSTFT.
If possible, ionospheric and precise orbit corrections
should be made to the GPS data, but a long comparison
time will still be required. All of the above techniques can
be degraded by instabilities in the ground-based
equipment, which in many cases are caused by
environmental sensitivities. Thus the use of any particular
technique doesn't guarantee good performance.

Fountain Dead Time

Because of laser-lock problems operating a fountain
continuously for tens of days can be a difficult task and
may not be possible in the first generation of fountains.
Therefore it is important to understand the impact of
fountain dead time on the uncertainty of a frequency
comparison.  In particularly we are interested in
distributed dead time. Figure 8, adapted from Barnes and
Allan [6], illustrates how distributed dead-time parameters
are defined. Here the vertical axis is fractional frequency,
y(t), rather than time difference. T represents the total
measurement interval, 1 is the duration of an individual
'live' time measurement, T,-1, is the dead time between

T = MTo = measurement interval
M = number of live measv.ements in T

T = M1 = total live time T>1
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Figure 8 Definition of dead-time parameters.
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Figure 9 Frequency uncertainty due to dead time.

live time measurements, and M is the number of live time
measurements in the interval T. The total live time is T =
Mr,, and the total dead time is T-Mt,. We will only
consider the case were T > 1. For the example in Fig. 8
there are 4 measurements of duration 1, distributed evenly
over T. The four measurements in Fig. 8 are not
symmetric about the center of T, whereas in a fountain
comparison every effort should be made to make them as
symmetric as possible since this minimizes the error
caused by frequency drift.

Figure 9 illustrates how dead time contributes to the
uncertainty of a frequency measurement. Consider a local
oscillator, LO, being measured by two identical, ideal
frequency standards, P; and Pp. The measurement made
with no dead time by P will be considered the 'truth’,
while a simultaneous measurement by P, with dead time
is an estimate of the truth. The measurement of §d(t) with
dead time is therefore an estimate of y(t) measured
without dead time. What we want to know is the
uncertainty, cg, of the estimate. Douglas et al [7] have
calculated oy for lumped dead time. From [6] and [7] it
can be shown that the measurement uncertainty,
64(M,T,1), is related to the Allan variances with and
without dead time as shown in Eq. 2,

Gfi(M,T,r)zof}(M,T,r)—o‘;')‘/(T), @)

where o(M,T,1) is the Allan deviation with dead time
and cy(%/) is the Allan deviation over interval T without
dead time. M = 1 for lumped dead time. From [6] we
find that o(M,T,7) is always larger than cy(T) for white,
flicker, an(;/ random-walk frequency noise (with or without
distributed dead time) for the case where T > v . For
T =1, we find as expected that cy(M,T,t) = Gy(T). The
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relation in Eq. 2 is exact for white frequency noise. For
flicker and random-walk frequency noise it is only
approximate, with errors in calculating cg(M,T,7) no
larger than +/- 50% for lumped dead times ranging from
50% to 97%.

It is clear from [6] that distributed dead time gives a
better measure of the true Allan deviation for flicker and
random-walk noise than does lumped dead time with the
same 1. For white frequency noise it makes no difference
whether the dead time is lumped or not. Since distributed
dead time gives a better estimate of the true Allan
deviation for flicker and random-walk noise every effort
should be made to spread the dead time evenly throughout
the interval T, as this gives a smaller value for 64(M,T,1).
Unfortunately exact solutions are not available for
c4(M,T,t) with distributed dead time (except for white
frequency noise) so values of oy(M,T,r) from [6] along
with Eq. 2 have to be used.

From [6], [7] and Eq. 2 we obtain the expressions
below. Equation 3 gives the Allan deviation with dead
time for white frequency noise and Eq. 4 gives the
measurement uncertainty.

White Frequency

6,(I.7)= Lo ,(T) e
64(T.7) = [(L~D)o,(T) @

Equations 5 and 6 give respectively the Allan deviation
and measurement uncertainty with distributed dead time
for flicker frequency noise.

Flicker Frequency

6,(M,T,7)=B,B;5,(T) )
0a(M,T,1)~(BB3 =)o, (T)  (©®

B, and Bj are bias coefficients tabulated in [6] which are
functions of M, T, 1, and the noise type. Equations 7 and
8 give respectively the Allan deviation and measurement
uncertainty with distributed dead time for random-walk
frequency noise.

Random-walk Frequency

oy (M,T.0) = [ ByBso(T) ()
Ca(M.T,%)~ /(3 BB~ ) ,(T) ®

Note that By and B3 for random-walk noise do not have
the same values as for flicker noise and are also dependent
on M, T, 1. It would be very desirable to have exact
expressions for 64(M,T,t) for distributed dead time with
flicker and random-walk noise but that is beyond the
scope of this paper.

Consider now an example of distributed dead time
using a cavity-tuned hydrogen maser as the LO. The
noise characteristics without dead time of a better than
average (but not the best) maser at NIST are shown below
for the three relevant noise types. t is in units of 1 day. It
is difficult to accurately characterize the random-walk
noise level because of the large frequency drift in
hydrogen masers, but the number used is reasonably
conservative.

White Frequency
oy(t) = (6.8x10"16)r-1/2

Flicker Frequency
oy(t) = (3.0x10-16)

Random-walk Frequency
oy(r) = (4.4x10-17)c1/2

For dead-time parameters we will use T = 40 days, M= 8,
and Mty = v =5 days. This gives values of o 4(M,T,7) for
each noise type as shown below. For flicker and random-
walk noise we have assumed maximum errors comparable
to those calculated for the lumped dead-time estimates
when using Eq. 2.

White Frequency
0((8,40,5) = 2.65(1.1x10-16) = 2.9x10-16

Flicker Frequency

54(8,40,5) < 0.5(3.0x10-16) = 1.5x10-16

Random-walk Frequency
04(8,40,5) < 0.12(2.8x10-16) = 3 4x10-17

The example above shows that even with 35 out of 40
days of dead time (87%) a cavity-tuned hydrogen maser
provides a sufficiently good local oscillator that the total
measurement uncertainty (root sum square of the three
values above) is less than 3.3x10°16. Even if the dead
time is lumped (for which there are exact expression) the
total measurement uncertainty is only 5.1x10°16, 1t is
important to note that care should be taken to make the
live time measurements evenly spaced and as symmetric
about the center of T as possible to ensure that frequency
drift does not excessively bias the measured frequency.
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As T gets smaller the fraction of dead time that can be
tolerated also gets 'smaller. This is because white
frequency noise is one of the major sources of
measurement uncertainty. For example, if T = 5 days, a
dead time of only 2.5 days (50%) will give the same
measurement uncertainty for white frequency noise as in
the example above. Depending on the details of the dead
time, the contributions from flicker and random-walk
noise may be the same as or smaller than in the example.

Summary

The analysis presented here has shown that if
common-view GPS and/or TWSTFT are used to compare
the frequencies of two primary frequency standards it will
take at least 24 and possibly 40 days to reduce the
frequency uncertainty introduced by the time-transfer
process to the range of 1x10°15. 1t is advantageous to use
two or more independent time-transfer techniques during
a fountain comparison since this reduces the frequency
uncertainty, allows unusual events to be more easily
identified, and also permits a statistical analysis based on
oy(T,7) to be performed during the actual comparison
time.

Twenty to forty days is an uncomfortably long period
of time and improved time-transfer techniques are clearly
necessary if frequency comparisons are to be performed
on a regular basis. However, the situation can be made
less painful by using a good local oscillator (such as a
hydrogen maser) so that substantial fountain dead time
can be present without significantly degrading the
uncertainty of the frequency comparison. Again it is
important to monitor the performance of the local
oscillator during the comparison process to make sure that
nothing unusual happens. This can be accomplished with
at least one other oscillator of comparable quality, though
two or more would be preferred.
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